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1 introduction

Lecture 1
13th Septem-
ber 2022
By Nantao
Zhang

To motivate the study, we first give some examples or applications in inter-
section theory.

1.1 example. Bezout theorem.

For more visit https://zenith-john.github.io/post/algebraic_geometry_

seminar_2022_fall.
∗znt21@mails.tsinghua.edu.cn

1

https://zenith-john.github.io/post/algebraic_geometry_seminar_2022_fall
https://zenith-john.github.io/post/algebraic_geometry_seminar_2022_fall
mailto:znt21@mails.tsinghua.edu.cn


1. introduction

1.2 example. (27 lines on cubic surface) To prove this theorem, we need to
consider Grassmannian Gr(1, 3) parametrizing lines in CP1. Then given any
point z ∈ Gr(1, 3) we can write four linear equations on A20 parametrizing
cubic surfaces, such that four equations are spontaneously zero if and only
if this line is contained in the corresponding cubic surface. The equations
can be glued to give a rank 4 vector bundles over Gr(1, 3). Every element in
A20 gives a global section of Gr(1, 3). To get number 27, we need to compute
the intersection number of a general section and zero section of the vector
bundle.

1.3 example. (Gromov-Witten theory) It is a natural question to determine
the number of genus g curves in a scheme X probably with some constraints.
To do so, we first construct the moduli space Mg(X) parametrizing all the
genus g curves in X. Every constraint determines an algebraic cycles in the
moduli space Mg (X). To get final number, we just take the intersection of all
algebraic cycles. If the dimension of intersections is zero, then we conclude
the number of points is the number of the genus g curves with constraints.

In this introduction, we also want to discuss the relation or difference
between algebraic geometry and algebraic topology. We may consider an
embedded non-contractible M � S1 in 2-dimensional real torus T2. How
do we compute self-interesetion of M? There are basicly two ways to do
so: by homological methods and by perturbation. However, we do not have
homology in algebraic geometry. On the other hand, it is also only possible
to perturbate the submanifold to tranversal intersection only in differential
manifolds. For example, we can consider

i : CP1 → OCP1(−1) � Bl0(A2)

Here E = i(CP1) is the zero section and exceptional divisor. A standard result
of complex geometry says the self-intersection E ·E = −1. However, E can not
be deformed in the realm of algebraic geometry, because Γ (CP1,OCP1(−1)) =
0. Therefore, we can not explain “intersection number” by perturbation.

Instead, much of the information is not contained in the U ∩ V part bu
in the higher homological part. We have Serre intersection formula.

1.4 theorem. Given a regular scheme X and subscheme Y, Z ⊂ X with defining
ideal I ,J . Then intersection multiplicity at a generic point x of Y ∩ Z is

m(x, Y, Z) =
∑
i≥0

(−1)i lOX,x
Tor

OX,x

i (OX,x/Ix,OX,x/Jx)

Here l denotes length.
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2. algebraic cycles

2 algebraic cycles

2.1 Cycles

Let X be an algebraic scheme. A k-cycle on X is a finite formal sum∑
ni[Vi]

where Vi are k-dimensional subvarieties (i.e. irreducible reduced scheme)
of X and ni are integers. The group of k-cycles, denoted by ZkX, is a free
abelian group. For any (k + 1)-dimensional subvariety W of X, and any
r ∈ R(W)∗ a rational function, we can associate it with a k-cycle

[div(r)] =
∑

ordV(r)[V]

The sum is over all codimensional 1 subvarieties V of W. The sum is always
finite. ordV(r) denote the vanishing order of r at V. Let A be the local ring
A := OV,W. If r ∈ A, then ordV(r) = lA(A/(r)), and extend to R(X) by

ordV(a/b) = ordV(a) − ordV(b)

A k-cycle α is rationally equivalent to zero, written as α ∼ 0, if there are a
finite number of (k + 1)-dimensional subvarieties Wi of X, and ri ∈ R(Wi)∗,
such that

α =
∑

[div(ri)]

The cycles rationally equivalent to zero form a subgroup Ratk X of ZkX. The
group of k-cycles modulo rational equivalence on X is the quotient group

AkX = ZkX/ Ratk X

and its element is called cycle class.
We denote

Z∗X = ⊕ZkX, A∗X = ⊕AkX

A cycle is called positive if it is nonzero and all coefficients ni are positive.
A cycle class is called positive if it can be represented by a positive cycle.

2.1 example.

AkX = AkXred

2.2 example. If X is nonsingular along V, then OV,X is a DVR. For r ∈ R(X)∗,
r = utm, u ∈ A∗, m ∈ Z and t uniformizer. Then ordV(r) = m. In general, we
only have

ordV(r) ≥ max{n | r ∈M n
V,X}
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2. algebraic cycles

2.3 example. Let X̃→ X be normalization of X. Then

ordV(r) =
∑

ordṼ(r)[R(Ṽ) : R(V)]

where sum is taken over all subvarieties Ṽ of X̃ which map onto V.

2.4 example. Let X1 and X2 be closed subschemes of X, then there are exact
sequence

Ak(X1 ∩ X2)→ AkX ⊕ AkX2 → Ak(X1 ∪ X2)→ 0

2.2 Operations of algebraic cycles

Let f : X→ Y be a proper morphism. For subvariety V ⊂ X, the image f (V)
is closed subvariety W of Y. Then we define

deg(V/W) =

[R(V) : R(W)] if dim W = dim V

0 if dim W < dim V

Define f∗[V] = deg(V/W)[W] which extends to

f∗ : ZkX→ ZkY

and induces
f∗ : AkX→ AkY

(For proof, see [Ful98, Theorem 1.3, Proposition 1.4])
If X is proper over S = Spec K and α =

∑
P
nP[P] is a zero-cycle on X, then

we define degree of α by

deg(α) =
∫
X

α =
∑

P

nP[R(P) : K]

We can define ∫
X

: A∗X→ Z

by defining
∫
X
α = 0 for α ∈ AkX, k > 0.

Now let f : X→ Y be a flat morphism (of relative dimension n).

2.5 notation. In later part, when we say f : X→ Y is flat, we assumes f is
flat of relative dimension n for some n ∈ Z.

We then define f ∗[V] = [f −1(V)] of dimension dim V +n. Then it extends
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2. algebraic cycles

to a homomorphism
f ∗ : ZkY→ Zk+nX

and induces
f ∗ : AkY→ Ak+nX

(For proof, see [Ful98, Theorem 1.7])
We can also define the exterior product

ZkX ⊗ ZkY→ Zk+l(X × Y)

given by
[V] × [W]→ [V × X]

and induces
AkX ⊗ AlY→ Ak+l(X × Y)

2.6 example. (Properness is essential) We may consider X = P1
K ∪A1

K
P1

K →
Spec K, and rational function r = x/y on X. Then we have f∗[div(r)] , 0.

2.7 example. Let X be a nonsingular curve of genus g. Then A0X = Pic(X).
Notice that for g > 0, A0X is not finite generated, in contrast with the case
of homology.

2.8 example. Let f : X′ → X be a finite and flat morphism; each point of
X has an neighborhood U such that coordinate ring of f −1(U) is a finite
generated free module over coordinate ring of U. We say f has degree d if
the rank of this module is d for all such U. Then

f∗f
∗[V] = d[V]

2.9 example. (Proposition 1.8 of [Ful98]) Let Y be a closed subscheme of X
and U = X−Y. Let i : Y→ X, j : U→ X be the inclusion. Then the sequence

AkY
i∗−→ AkX

j∗

−→ AkU→ 0

is exact.

Proof. Since any subvariety V of U extends to a subvariety V̄ of X, so the
sequence

ZkY→ ZkX→ ZkU→ 0

is exact. To see the middle exactness passes to cycle classes, we show that if
α ∈ ZkX such that j∗α ∼ 0, then it is in the image of i∗. By assumption, we
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2. algebraic cycles

have
j∗α =

∑
[div(ri)]

for ri ∈ R(Wi)∗. Since R(W̄i) = R(Wi), we have r̄i ∈ R(W̄i) and

j∗(α −
∑

[div(r̄i)]) = 0

in ZkU. Therefore
α −

∑
[div(r̄i)] = i∗β

for some β ∈ ZkY, which complete the proof.

2.10 example. (Propositon 1.7 of [Ful98]) Let

X′ X

Y′ Y

f ′

g

f

g ′

be a fibre square, with g flat and f proper. Then

f ′∗ g
′∗α = g∗f∗α

2.11 example. (Proposition 1.9 of [Ful98]) Let p : E→ X be an affine bundle
of rank n. Then the flat pull-back

p∗ : AkX→ Ak+nE

is surjective for all k.

Sketch of proof. Continuously applying exact sequence

AkY→ AkX→ AkU→ 0

and Noetherian reduction, we may assume that X is affine. By consider
composition, X × An → X × An−1 → X, we may assume E = X × A1. Then
just do the commutative algebra stuff to figure it out.

2.12 example. Ak(An) =

0 for k < n

Z for k = n

2.13 example. Ak(Pn) = Z for k ≤ n.

2.14 example. Let H ⊂ Pn be a hypersurface of degree d. Then

An−1(Pn − H) = Z/dZ
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3. intersection with divisors

2.15 example.

(f × g)∗(α × β) = f∗α × f∗β

(f × g)∗(α × β) = f ∗α × f ∗β

2.3 Alternative description of rational equivalence

Let X be any scheme and X1, · · · , Xt irreducible components of X. The local
rings OXi ,X are zero dimensional. The geometric multiplicity mi is defined to
be

mi = lOXi ,X
(OXi ,X)

The fundamental cycle [X] of X is the cycle

[X] =
t∑

i=1

mi[Xi,red]

Now we give another description of rational equivalence.

2.16 proposition. (Proposition 1.6 of [Ful98]) A cycle α in ZkX is rationally
equivalent to zero if and only if there are (k + 1)-dimensional subvarieties
V1, · · · , Vt ⊂ X × P1 such that the projection Vi → P1 is dominant, with

α =
t∑

i=1

[Vi(0)] − [Vi(∞)]

in ZkX.

3 intersection with divisors

Lecture 2
20th Septem-
ber 2022
By Liyuan
Ye

3.1 Divisors

A Weil divisor on a variety X is a codimension 1 cycle, i.e. finite formal
sum of codimension 1 subvarieties, e.g. [D] =

∑
nV[V] is a codimensional 1

subvariety. The Weil divisor form a group Zn−1X and An−1X.
A Cartier divisor is a data {(Uα, fα)} such that

1. Uα form an open covering.

2. fα is local equation in Γ (Uα,K
∗).

3. fα/fβ is unit in Γ (Uα,O
∗).

When X is a variety, V a subvariety. Then ordV fα is well-defined and
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3. intersection with divisors

ordV fα = ordV fβ if Uα ∩ Uβ , ∅. This gives Hom:

C→
∑

V

ordV(fα)[V]

and the sum is right is finite.
Any f ∈ R(X)∗ determines a principal Cartier divisor {(Uα, f |Uα

)}. Two
Cartier divisors are linear equivalent if and only if they differ a principal
Cartier divisor. Denote Pic(X) as group of Cartier divosr modulo principal
divisor. And we have a map

Hom : Pic X→ An−1X

3.1 remark. The Hom is in general neither injective nor surjective.

The support of Cartier divisor D denote |D|, supp(D) is the union of
subvariety Z of X such that local equation D in the local ring OZ,X is not a
unit. The support of D is closed subset of X.

A pseudo-divisor on a scheme X is a triple (L, Z, s) such that

1. L is a line bundle on X.

2. Z is a support.

3. s a section of L and no where vanishing on X/Z.

3.2 definition. (L′ , Z′ , s′) and (L, Z, s) define the same pseudo divisor if
Z = Z′, and σ|X−Z : L→ L′ is an isomorphism and σ|X−Z(s) = s′.

If Z = X, then we call (L′ , X′ , s′) and (L, Z, s) equivalent of L′ � L.

A Cartier divisor D gives a pseudo-divisor (OX(D), |D| , sD). And we say
that a Cartier divisor D represents a pseudo-divisor (L, Z, s) if |D| ⊂ Z, and
exists an isomorphism OX(D)→ L takes sD → s.

3.3 remark. Here we allow Z to be larger than |D|. And if Z = X, then all
linear equivalent Cartier divisor represents the same pseudo-divisor.

3.4 lemma. If X is a variety, then any pseodo-divisor (L, Z, s) can be represented
by some Cartier divisor. Moreover,

1. If Z , X, then D is uniquely determined.

2. If X = Z, then D is determined up to linear equivalence.

By above lemma, we sometimes use D to denote a pseudo-divisor triple.
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3. intersection with divisors

Given a pseudo divisor D, we can associate a Cartier divisor C represents
D. We define [D] := [C] to be the Weil divisor associated to the pseudo-
divisor D.

If (L, Z, s) and (L′ , Z′ , s′) two pseudo-divisors, the sum D + D′ := (L ⊗
L′ , Z ∪ Z′ , s ⊗ s′). Similarly −D = (L−1, Z, 1/s). Fix Z ⊂ X closed, the pseudo-
divisor with support Z form a group.

Let f : X′ → X be a morphism. D = (L, Z, s) on X then we define the
pullback

f ∗D = (f ∗L, f −1(Z), f ∗(s))

3.5 remark. The reason we use pseudo-divisor instead of Cartier divisor
because Cartier divisor behaves badly with respect to pullback.

3.2 Intersection with divisor

3.6 definition. Let D be a pseudo-divisor on X, V be a k-dimensional
subvariety of X. Then we define a class denoted by D · [V] or D · V in
Ak−1(|D| ∩ V). As j : V → X inclusion. Then j∗D is a pseudo-divisor on V.
Denote by D · [V] to be the Weil divisor class of [j∗D] in Ak−1(|V| ∩ |D|).

For k-cycle α =
∑

nV[V] on X, the support of α written as |α| is union
of the subvarieties V appearing with non-zero coefficient in α. For pseudo-
divisor D on X each D · [V] is a class in Ak−1(|D| ∩ |α|). We can define the
intersection class

D · α ∈ Ak(|D| ∩ |α|)

by
D · α =

∑
V

nVD · [V]

3.7 remark. The intersection class will be used to define two constructions

1. If L = O(D) a line bundle on X and |D| = X. Then D ·α will be c1(L)∩α,
the action of Chern class of L on α.

2. D is effective Cartier divisor on X, i : D ↪→ X, then D · α will be the
Gysin pullback i∗α.

3.8 proposition. [Ful98, Proposition 2.3]

1. If D pseudo-divisor, α · α′ k-cycle, then D · (α · α′) = D · α + D · · · α′.

2. If D, D′ pseudo-divisor, α k-cycle then (D + D′) · α = D · α + D′ · α′.

3. (Projective formula) f : X′ → X proper morphism α k-cycle on X′

g : f −1(|D| ∩ f (|α|))→ |D| ∩ |f (α)|
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3. intersection with divisors

Then g∗(f ∗D · α) = D · f∗(α).

4. Let f : X′ → X flat, α k-cycle on X.

g : f −1(|D| ∩ |α|)→ |D| ∩ |α|

Then f ∗D · f ∗α = g∗(D · α).

5. If line bundle O(D) is trivial, and α a cycle, then D · α = 0.

3.9 theorem. [Ful98, Theorem 2.5] Let D, D′ be Cartier divisor on n-dimensional
variety. Then

D · [D′] = D′ · [D]

in An−2(|D| ∩ |D′ |).

3.10 corollary. [Ful98, Corollary 2.6] Let D on X, α k-cycle rationally equiv-
alent to 0. Then

D · α = 0

in Ak−1(|D|).

Proof. α = [div r], D · [div r] = div(r) · [D] = 0.

3.11 definition. If D is a pesudo-divisor on X, Y closed subscheme. α→
D · α determines homomorphism

ZkY→ Ak−1(|D| ∩ Y)

If α is rational equivalent to 0. Then

D · α = 0

So this gives
AkY→ Ak−1(|D| ∩ Y)

3.12 corollary. Let D, D′ be pseudo-divisor X for any k-cycle α on X.

D · (D′ · α) = D′ · (D · α)

3.13 definition. Let D1, · · · , Dn be pseudo-divisor for k-cycle, we can define

D1 · Dn · α

More generally, P(T1, · · · , Tn) homogeneous polynomial of degree d

p(D1, · · · , Dn) · α ∈ Ak−d(X)
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3. intersection with divisors

If n = k, and Y = |D1| ∩ · · · ∩ |DK| ∩ |α| is complete. We define an inter-
section number (D1 · · ·Dn · α)X by

(D1 · Dk · α)X =
∫
Y

D1 · · ·Dk · α

Similarly for P polynomial, we define

(P(D1, · · · , Dk) · α)X =
∫
Y

P(D1, · · · , Dn) · α

3.14 example. π : X→ A2 be blow up of A2 at the origin D ·D′ be the inverse
image of x-axis and y-axis. Then D · [D′] and D′ · [D] are well-defined cycles
on D ∩ D′ = E. D · [D′] , D′ · [D] ∈ Z0(X), but are equal in A0(X).

3.15 example. Let V be an irreducible surface and P is a singular point. Let
π : X → V be a proper morphism E = π−1(P). Assume X regular, that π

maps X − E isomorphically onto V − P and E connected. Then (D · D′)X < 0
for any effective non-zero divisor D on X. (Because (A · B)X ≥ 0 for surfaces
if |A| · |B|.)

3.16 example. [x : y : z : t] ∈ P3, X is a singular cone, deinfed by z2 = xy.
If D = {x = 0}, L = {x = z = 0} and L′ = {y = z = 0}. Let P = {[0 : 0 : 0 : 1]}.
[D] = 2[L] and D · [L′] = [P]. It follows that there cannot be Cartier divisor
D′ on X with [D′] = [L′]. [L′] = [D′] and [P] = D · [P′] = D′ · [P] = 2D′ · [L′].

We define the Chern class of a line bundle to be operation

c1(L) ∩ [V] = [C]

Let V is k-variety. L|V is a Cartier divisor C determined up to linear equiva-
lent [C] a Weil divisor.

If L = OX(D), then c1(OX(D)) ∩ α = D · α.

3.17 proposition. [Ful98, Proposition 2.5]

1. c1(L) ∩ − : AkX→ Ak−1X

2. c1(L) ∩ (c1(L′) ∩ α) = c1(L′) ∩ (c1(L) ∩ α)

3. f∗(c1(f ∗L) ∩ α) = c1(L) ∩ f∗α

4. c1(f ∗L) ∩ f ∗α = f ∗(c1(L) ∩ α)

5. c1(L⊗ L′) ∩ α = c1(L) ∩ α + c1(L′) ∩ α, c1(L∨) ∩ α = −c1(L) ∩ α
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Let D be an effective Cartier divisor and i : D→ X inclusion. We define
the Gysin map

i∗ : ZkX→ Ak−1D

determined by i∗(α) = D · α.

3.18 proposition. The Gysin map reduces to i∗ : AkX→ Ak−1D.
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