

Non-ruledness via Hodge atoms

Nantao Zhang

Tsinghua University

Abstract

We apply the theory of Hodge atoms developed in [KKPY25] to show that cubic-threefolds and general cubic fourfolds are not ruled. We also discuss a possible derived category counterpart of atoms theory.

1 Introduction

Definition 1.1. *An algebraic variety X of dimension n is called rational if there is a birational equivalent \mathbb{P}^n and is called ruled if it is birational equivalent to $Y \times \mathbb{P}^1$, where Y is some algebraic variety of dimension $n-1$. Since $\mathbb{P}^{n-1} \times \mathbb{P}^1$ is birational equivalent to \mathbb{P}^n any rational variety is ruled.*

Determine whether an algebraic variety is rational is a long-standing problem in algebraic geometry. In [CG72], Clemens and Griffiths gives a proof on non-rationality of cubic threefolds via intermediate Jacobian. However, the non-rationality of general cubic fourfold remains a long standing problem until recent breakthrough by [KKPY25] via the theory of Hodge atoms. Also they give a new proof of non-rationality of cubic threefold.

On the other hand, the best result about non-ruledness of hypersurfaces is given by Kollar in [Kol95].

Theorem 1.2. ([Kol95, Theorem 4.1]) *Let $X_d \subset \mathbb{P}^{n+1}$ be a very general hypersurface over \mathbb{C} . If $d \geq 2^r \lceil (n+3)/3 \rceil$, then X_d is not ruled.*

In particular, cubic threefolds and fourfolds ($d=3, n=3, 4$) are not included in his result. In this paper, we will prove the following.

Theorem 1.3. (Theorem 3.3) *Cubic threefolds and very general cubic fourfolds are not ruled.*

2 Hodge atoms

Here we give an overview of Hodge atoms developed in [KKPY25]. Let \mathbb{K} be a non-archimedean field of characteristic 0. And \mathbb{D} denote the germ at 0 in a \mathbb{K} -analytic unit disk with coordinate u .

Definition 2.1. *A non-archimedean \mathbb{K} -analytic F bundle, or F -bundle in short, is a triple $(\mathcal{H}, \nabla)/B$, such that*

1. *B is a smooth \mathbb{K} -analytic super variety or a germ of smooth \mathbb{K} -analytic super variety along an even closed smooth \mathbb{K} -analytic subvariety.*
2. *\mathcal{H} is a \mathbb{K} -analytic super vector bundle over $B \times \mathbb{D}$.*
3. *∇ is a meromorphic flat connection on \mathcal{H} with poles at most along $B \times \{0\}$, and for any vector field ξ on B , $\nabla_{u^2 \partial u}$ and $\nabla_{u \xi}$ are regular.*

Let ξ be a vector field on B , then we define

$$\mu : T_B \rightarrow \text{End}(\mathcal{H}|_{u=0})$$

to be the restriction of $\nabla_{u \xi}$ on $\mathcal{H}|_{u=0}$. And we define μ_b to be its further restriction to $\mathcal{H}_{(b,0)}$.

Definition 2.2. An F -bundle $(\mathcal{H}, \nabla)/B$ is called maximal (resp. over-maximal) at a geometric point $b \in B$ if there exists a vector $h \in \mathcal{H}_{(b,0)}$ such that

$$\text{ev}_h \circ \mu_b : T_{B,b} \rightarrow \mathcal{H}_{(b,0)}$$

is an isomorphism (resp. epimorphism).

And an F -bundle is maximal (resp. over-maximal) if it is maximal (resp. over-maximal) everywhere.

Let $(\mathcal{H}, \nabla)/B$ be a maximal F -bundle, the *Euler vector field* is the unique even vector field Eu on B which under the action μ maps to endomorphism $\nabla_{u^2 \partial_u}|_{\mathcal{H}|_{u=0}}$.

Now we construct the A-model F -bundle via Gromov-Witten theory. Let $\mathcal{K} = \overline{\mathcal{K}}$ an algebraic closed field of characteristic 0 and X a smooth projective \mathcal{K} -variety and $\beta \in \text{CH}_1^{\text{hom}}(X)$. We define $\overline{\mathcal{M}}_{0,n}(X, \beta)$ as the moduli of stable maps $\phi : (C, p_1, \dots, p_n) \rightarrow X$ where

1. C is a connected nodal genus 0 curve.
2. p_1, \dots, p_n are smooth points of C .
3. $\phi_*[C] = \beta$ and if ϕ contracts a component of C to a point in X , then the number of marked points and nodes on the component ≥ 3 .

There exists a virtual fundamental class on proper Deligne-Mumford stack $\overline{\mathcal{M}}_{0,n}(X, \beta)$ ([BF97])

$$[\overline{\mathcal{M}}_{0,n}(X, \beta)]_{\text{vir}} \in \text{CH}_{\delta(n, \beta)}(\overline{\mathcal{M}}_{0,n}(X, \beta))$$

Here

$$\delta(n, \beta) = n + (\dim X - 3) + \int_{\beta} c_1(T_X)$$

is the virtual dimension. We define the Gromov-Witten cycle class $I_{n, \beta}(X)$ as the image

$$I_{n, \beta}(X) = \text{ev}_*[\overline{\mathcal{M}}_{0,n}(X, \beta)]_{\text{vir}}^{\text{hom}} \in \text{CH}_{\delta(n, \beta)}^{\text{hom}}(X^{\times n}) \otimes \mathbb{Q}$$

where

$$\text{ev} : \overline{\mathcal{M}}_{0,n}(X, \beta) \rightarrow X^{\times n}, (C, p_1, \dots, p_n, \phi) \rightarrow (\phi(p_1), \dots, \phi(p_n))$$

For simplicity, we just consider the case $\mathcal{K} = \mathbb{C}$ and $\mathbb{K} = \overline{\mathbb{Q}}((y^{\mathbb{Q}})) \supset k = \mathbb{Q}$ is the algebraic closed non-archimedean field of Puiseux series. Let X/\mathcal{K} be a smooth projective variety, and $H^*(X) = H^*(X(\mathbb{C})^{\text{an}}, k)$. Let $N_1(X, \mathbb{Z}) = \text{CH}_1^{\text{hom}}(X)$ the group of curve classes, and let $\text{NE}(X, \mathbb{Z}) \subset N_1(X, \mathbb{Z})$ the monoid of effective curve classes. We define

$$k[\text{NE}(X, \mathbb{Z})] = \bigoplus_{\beta \in \text{NE}(X, \mathbb{Z})} k \cdot q^{\beta}$$

with multiplication $q^{\beta_1} \cdot q^{\beta_2} = q^{\beta_1 + \beta_2}$. And write $k[\![q]\!] = k[\![\text{NE}(X, \mathbb{Z})]\!]$ for the completion with respect to ideal generated by all $q^{\beta}, \beta \neq 0$.

Let $\{T_i\}_{i=0, \dots, r}$ be a homogeneous basis of $H^*(X)$, where $T_0 = 1 \in H^0(X)$ and degree two basis are chosen to form two groups which spanning $H^2(X)_{\text{alg}}$ and H^2_{trans} respectively. And (t_i) are coordinates with respect to the above basis. Then for $\gamma_1, \dots, \gamma_n \in H^*(X)$ we define

$$\langle \gamma_1, \dots, \gamma_n \rangle_{\beta} := \int_{I_{n, \beta}(X)} \gamma_1 \boxtimes \dots \boxtimes \gamma_n$$

We define the H^* -valued genus 0 Gromov-Witten potential to be the formal power series

$$\Phi(q; t) := \sum_{n \geq 0, \beta \in \text{NE}(X, \mathbb{Z})} \frac{q^{\beta}}{n!} \sum_{i_1, \dots, i_n} \langle T_{i_1}, \dots, T_{i_n} \rangle_{\beta} t_{i_1} \cdots t_{i_n} \in k[\![q]\!][\![t_0, \dots, t_r]\!] =: \text{Nov}_X$$

Let $\mathcal{T}_{\mathbb{K}}(X) := \text{NS}(X, \mathbb{Z})_{\text{tf}} \otimes_{\mathbb{Z}} \mathbb{G}_{m, \mathbb{K}}$, where $\text{NS}(X, \mathbb{Z})_{\text{tf}}$ the torsion-free Néron-Severi group. Let $\{L_i\}$ be a sequence of ample line bundles, whose first Chern class ω_i form a basis of Néron-Severi group. We define $B_{X, q}$ to be the preimage of the ample cone under the valuation map of non-archimedean field $\mathcal{T}_{\mathbb{K}}(X)^{\text{an}} \rightarrow \text{NS}(X, \mathbb{R})$, with coordinates q_i corresponding to ω_i . Define $\mathcal{B}_{X, t}^{\text{ev}}$ as product of analytic affine line corresponding to t_0 and unit polydisk with coordinates corresponding to $\deg T_i \in \{2, 4, 6, \dots\}$. Define $B_{X, t}^{\text{ev}}$ to be the product of analytic

affine line corresponding to t_0 and unit polydisk with coordinates corresponding to $\deg T_i \in \{4, 6, 8, \dots\}$ and $\deg T_i = 2$ and transcendental. Define B_X^{odd} as the super analytic variety whose underlying variety is a point and algebra of function is exterior algebra in the coordinates t_i for $\deg T_i \in \{1, 3, 5, \dots\}$. Finally, we set $\mathcal{B}_X := B_{X,q} \times \mathcal{B}_{X,t}^{\text{ev}} \times B_X^{\text{odd}}$. Let $\mathcal{H} = H^*(X) \otimes_k \mathcal{O}_{\mathcal{B}_X \times \mathbb{D}}$ be the trivial vector bundle on $\mathcal{B}_X \times \mathbb{D}$. We have a canonical identification $\mathcal{H} = \bigoplus_{i=1}^r \mathcal{O}_{\mathcal{B}_X \times \mathbb{D}} \cdot T_i$. We can define quantum product

$$\star : \mathcal{H} \otimes \mathcal{H} \rightarrow \mathcal{H}$$

by

$$\langle T_i \star T_j, T_k \rangle = \sum_{i=1}^r \left\langle \frac{\partial^3 \Phi}{\partial t_\alpha \partial t_\beta \partial t_i} T^i, T_k \right\rangle$$

where T^i is the Poincaré dual of T_i .

Then we define the non-archimedean analytic quantum connection $\nabla : \mathcal{H} \rightarrow \mathcal{H} \otimes \Omega_{\mathcal{B}_X \times \mathbb{D}}^1[u, u^{-1}]$ to be

$$\begin{aligned} \nabla_{\partial_u} &= \partial_u - u^{-2}(\text{Eu} \star (-)) + u^{-1} \frac{\mu - \dim X \cdot \text{id}}{2} \\ \nabla_{\partial_{q_j}} &= \partial_{q_j} + u^{-1} q_j^{-1}(\omega_j \star (-)) \\ \nabla_{\partial_{t_i}} &= \partial_{t_i} + u^{-1}(T_i \star (-)) \end{aligned}$$

Here $\mu : \mathcal{H} \rightarrow \mathcal{H}$ is the degree operator $\mu = \bigoplus_{a=0}^{\dim X} a \cdot \text{id}_{H^a(X)}$, and Eu is the Euler vector field for point $\gamma \in \mathcal{B}_X$ by

$$\text{Eu}_\gamma = c_1(T_X) + \frac{\mu - 2\text{id}}{2}(\gamma) \subset \mathcal{H}_\gamma$$

We define the *non-archimedean maximal A-model F-bundle* associated to X to be the restriction of $(\mathcal{H}, \nabla)/\mathcal{B}_X$ to B_X .

For a smooth complex variety X , we take $(\mathcal{H}, \nabla)/B_X$ to be the non-archimedean maximal A-model F-bundle. And let $\tilde{B} \rightarrow B_X$ be the ramified covering given by the spectrum of the Eu-action. $U_X \subset B$ the locus where the number of eigenvalues of the Eu-action is maximal, and $\tilde{U}_X := U_X \times_{B_X} \tilde{B}_{\text{red}}$. The set of *local Hodge atoms* associated to X is $\pi_0(\tilde{U}_X)$ and the multiplicity of an $\alpha \in \pi_0(\tilde{U}_X)$ is defined to be the degree of the covering of corresponding connected component $\tilde{U}_{X,\alpha}$ over U_X .

The set HAtoms of all Hodge atoms of smooth projective variety is the quotient

$$\text{HAtoms} := \left(\coprod_{[X]} \pi_0(\tilde{U}_X) / \text{Aut}(X) \right) / \sim$$

where the union is taken over isomorphism class of complex smooth projective variety, and the equivalence relation is generated by following three elementary equivalences

- [KKPY25, Section 5.2.3] If X_1 and X_2 are tow non-empty smooth projective varieties over \mathcal{K} . Then we have $\alpha \in \pi_0(\tilde{U}_{X_1}) / \text{Aut}(X_1)$ disjoint union elementary equivalent to its image α under the embedding

$$\pi_0(\tilde{U}_{X_1}) / \text{Aut}(X_1) \hookrightarrow \pi_0(\tilde{U}_{X_1 \coprod X_2}) / \text{Aut}(X_1 \coprod X_2)$$

- [KKPY25, Section 5.2.4] Let X is a pure-dimensional smooth projective variety over \mathcal{K} , and $Z \subset X$ is a smooth projective subvariety of codimension ≥ 2 . We denote by $\hat{X} = \text{Bl}_Z X$ the blowup of X with center Z and $X' := X \coprod Z \coprod \dots \coprod Z$ disjoint union of X and $(m-1)$ -copies of Z . Then we have local atom $\alpha \in \pi_0(X) / \text{Aut}$ to be *blowup elementary equivalent* to a local atom $\alpha' \in \pi_0(X') / \text{Aut}(X')$ via the following correspondence

$$\begin{array}{ccccc} & \pi_0(\tilde{U}_{\hat{X}}) \cong \pi_0(\tilde{U}_{X'}) & & & \\ & \swarrow & \searrow & & \\ \pi_0(\tilde{U}_{\hat{X}}) & & & \pi_0(\tilde{U}_X) \coprod \pi_0(\tilde{U}_Z) \coprod^{m-1} & \\ & \nwarrow & & & \searrow \\ \pi_0(\tilde{U}_{\hat{X}}) / \text{Aut}(\hat{X}) & & & & \pi_0(\tilde{U}_{X'}) / \text{Aut}(X') \end{array}$$

Here $\mathbb{U}_{\hat{X}} \subset U_{\hat{X}}$ and $\mathbb{U}_{X'} \subset U_{X'}$ are subset over which the corresponding A -model F -bundle of \hat{X} and X' coincides and $\tilde{\mathbb{U}}_{\hat{X}}$ and $\tilde{\mathbb{U}}_{X'}$ are their pullback to ramified covers. The existence of such $\mathbb{U}_{\hat{X}}$ and $\mathbb{U}_{X'}$ follows from Iritani's blow-up formula [Iri23].

3. [KKPY25, Section 5.2.5] Suppose X is a non-empty smooth projective variety over \mathcal{K} and E is a vector bundle over X of rank ≥ 2 . By the results of [IK23] and [HYZZ25], there exists a non-empty connected domain $\mathbb{U}_{\mathbb{P}(E)} \subset U_{\mathbb{P}(E)}$ and $\mathbb{U}_X \subset U_X$ such that $\mathbb{U}_{\mathbb{P}(E)} \cong \mathbb{U}_X^{\amalg r}$ such that the Euler operator are compatible. This gives a correspondence between local atoms of $\mathbb{P}(E)$ to the local atoms of $X^{\amalg r}$ and we say $\alpha \in \pi_0(\tilde{U}_{\mathbb{P}(E)}) / \text{Aut}(\mathbb{P}(E))$ is *Leray-Hirsch elementary equivalent* to the corresponding local atoms $\alpha' \in \tilde{U}_{X^{\amalg r}} / \text{Aut}(X^{\amalg r})$.

3 Application to Cubic Hypersurfaces

By definition the Hodge atoms admits a natural filtration

$$\text{HAtoms}_{\leq 0} \subset \text{HAtoms}_{\leq 1} \subset \dots$$

Our first result is an obvious improvement of [KKPY25, Proposition 5.17],

Proposition 3.1. *Let X be a smooth projective variety of dimension $d \geq 2$ over \mathcal{K} . Suppose we have a local Hodge atom α of X such that $\alpha \notin \text{HAtoms}_{\dim \leq d-2}$. Then X can not be birationally equivalent to $Y \times \mathbb{P}_{\mathcal{K}}^2$, where Y is a variety of dimension $d-2$. In particular, X can not be birationally equivalent to $\mathbb{P}_{\mathcal{K}}^d$.*

Proof. Suppose X is birationally equivalent to $Y \times \mathbb{P}^2$ then by weak factorization theorem [Wlo02], there exists a series of blowups and blow-downs with smooth centers connecting X and $Y \times \mathbb{P}^2$. Since the centers must have codimension at least 2, and every local atom of $Y \times \mathbb{P}^2$ must belong to $\text{HAtoms}_{\leq 2}$ by Leray-Hirsch elementary equivalence, every local atom of X also contains in $\text{HAtoms}_{\leq 2}$ which is a contradiction. \square

The following lemma gives an atom theoretic non-ruledness criterion.

Lemma 3.2. *Let X be a smooth projective variety of dimension $d \geq 2$ over \mathcal{K} . Suppose the number of local Hodge atom (counting by multiplicity) α of X such that $\alpha \notin \text{HAtoms}_{\dim \leq d-2}$ is odd. Then X is not birationally equivalent to $Y \times \mathbb{P}_{\mathcal{K}}^1$, where Y is a variety of dimension $d-2$. That is X is not ruled.*

Proof. We argue by contradiction. If X is birational to $Y \times \mathbb{P}^1$. Then Hodge atom of X is equal to 2-copies of Hodge atoms of Y modulo $\text{HAtoms}_{\leq \dim X - 2}$. Therefore, counting by multiplicity, the total number of local Hodge atoms α with $\alpha \notin \text{HAtoms}_{\dim \leq d-2}$ must be odd. \square

For cubic threefold, we can do better.

Theorem 3.3. 1. *A cubic threefold is not ruled.*

2. *A very general cubic threefold is not ruled.*

Proof. Let X be a smooth cubic threefold. From calculation of [KKPY25, Example 6.21], we know that the atomic decomposition of X contains one indecomposable atom α corresponding to the eigenvalue 0. Also α cannot come from a Hodge atom of dimension ≤ 1 . By Lemma 3.2, a cubic threefold is not ruled.

The second claim follows from calculation of Hodge atoms of very general cubic fourfolds in proof of [KKPY25, Theorem 6.8] and Lemma 3.2. \square

4 Derived Category Counterpart

In [Kuz16], the author suggested a possible approach to prove the non-rationality via derived category method. Let \mathcal{A} be a triangulated category, one can define the *geometric dimension* of \mathcal{A} denoted by $\text{gdim}(\mathcal{A})$ as the minimal integer n such that \mathcal{A} can be realized as an admissible subcategory of a smooth projective variety of dimension n . And a semiorthogonal decomposition $\mathcal{T} = \langle \mathcal{A}_1, \dots, \mathcal{A}_n \rangle$ is called *maximal* if each component \mathcal{A}_i is indecomposable. Let X be a projective variety of dimension n , and $D^b(X) = \langle \mathcal{A}_1, \dots, \mathcal{A}_n \rangle$ to be a maximal semiorthogonal decomposition, then we "define" *Griffiths component* of X to be

$$\text{Griff}(X) := \{ \mathcal{A}_i \mid \text{gdim}(\mathcal{A}_i) \geq n-1 \}$$

If Griffiths component is well defined, i.e. it doesn't depend on the choice of maximal decomposition, then by weak factorization theorem and blow-up formula for derived category [BO95], one can use the non-emptiness of Griffiths component to show that a variety is not rational. However, as already mentioned in [Kuz16], the Griffiths component is not well defined, i.e. it depends on the choice of maximal decomposition. Here are some known counterexamples.

Example 4.1. [Kuz13] Let

$$Q = \left(\bullet \xrightarrow[\alpha_2]{\alpha_1} \bullet \xrightarrow[\beta_2]{\beta_1} \bullet \mid \beta_1\alpha_2 = \beta_2\alpha_1 \right)$$

be the quiver. Then $D(Q) = \langle P_1, P_2, P_3 \rangle$ where P_i are the projective module of i -th vertex. Also, there exists another exceptional object

$$P = \left(k \xrightarrow[0]{\text{id}} k \xrightarrow[0]{\text{id}} k \right)$$

And $D^b(Q) = \langle P^\perp, P \rangle$, and every indecomposable admissible subcategory of P^\perp has geometric dimension > 1 . However, $D(Q)$ can be realized as an admissible subcategory of a rational threefold X which is two step blow-up of \mathbb{P}^3 .

Example 4.2. There are more examples about phantoms (admissible subcategory with a trivial Hochschild homology and a trivial Grothendieck group) and quasiphantoms (admissible subcategory with a trivial Hochschild homology and a finite Grothendieck group) [GO13]. Obviously, $\text{gdim}(\mathcal{A}) > 1$ of a phantom or quasiphantom \mathcal{A} . Therefore [Kra24] gives a counterexample.

Based on construction of Hodge atoms, we consider the following modification of the above idea, by introducing stability conditions [Bri07]. We first assume the following conjecture.

Conjecture 4.3. Let X be a smooth projective variety. Then $D^b(X)$ has Bridgeland stability conditions.

Let $\mathcal{T} = \langle \mathcal{A}_1, \dots, \mathcal{A}_n \rangle$ is called *maximal polarized* if every \mathcal{A}_i is indecomposable and there exists a Bridgeland stability on \mathcal{A}_i . Given a maximal polarized semiorthogonal decomposition, we define the *polarized Griffiths component* of X similarly, denoted by $\text{pGriff}(X)$.

Conjecture 4.4. Polarized Griffiths component is well defined, i.e. independent of choice of maximal polarized semiorthogonal decomposition.

Remark 4.5. In [HW25], it is shown that even polarized semiorthogonal decomposition doesn't have Jordan-Hölder property, but their example doesn't directly lead to the counterexample of above conjecture, because the components may still lie in some derived category of a variety of codimension ≥ 2 .

Although, we can not prove above conjecture, we give some evidence of above conjecture. First, we show that the above two counterexamples is no longer a counterexample for our new conjecture. In Example 4.1, the category P^\perp doesn't have Bridgeland stability condition [HW25], therefore at least one of its indecomposable admissible subcategory has no semiorthogonal decomposition, otherwise the glueing [CP10] will produce stability condition on P^\perp . For Example 4.2, the phantom or quasiphantom category can not have Bridgeland stability condition by definition.

On the other hand, by [BMMS12] and [BLMS23], the Kuznetsov components of cubic threefold or fourfold have Bridgeland stability condition, and therefore the argument in [Kuz10] and [Kuz16] can still be applied to prove the non-rationality of cubic threefold and general cubic fourfold.

We also point out that a special case of DK conjecture [Huy06] that two birational smooth projective Calabi-Yau varieties are derived equivalent is a corollary of above two conjecture. The conjecture is known to be true for Calabi-Yau threefold by [Bri02].

Corollary 4.6. If Conjecture 4.3 and Conjecture 4.4 holds, then every two birational Calabi-Yau variety are derived equivalent.

Proof. Let X and Y be two birational Calabi-Yau variety. Since Calabi-Yau category is indecomposable and by Hochschild homology, they cannot be admissible subcategory of varieties of $\dim X - 2$. Therefore, we have

$$\{D^b(X)\} = \text{pGriff}(X) = \text{pGriff}(Y) = \{D^b(Y)\}$$

□

Remark 4.7. The above reasoning have also been pointed out in [Hal24]. But our conjecture seems to be weaker than the grand program proposed there.

References

[BF97] K. Behrend and B. Fantechi. “The Intrinsic Normal Cone”. In: *Inventiones mathematicae* 128.1 (Mar. 1, 1997), pp. 45–88.

[BLMS23] Arend Bayer, Martí Lahoz, Emanuele Macrì, and Paolo Stellari. “Stability Conditions on Kuznetsov Components”. In: *Annales scientifiques de l’École Normale Supérieure* 56.2 (2023), pp. 517–570. arXiv: 1703.10839.

[BMMS12] Marcello Bernardara, Emanuele Macrì, Sukhendu Mehrotra, and Paolo Stellari. “A Categorical Invariant for Cubic Threefolds”. In: *Advances in Mathematics* 229.2 (Jan. 30, 2012), pp. 770–803.

[BO95] A. Bondal and D. Orlov. *Semiorthogonal Decomposition for Algebraic Varieties*. June 19, 1995. arXiv: alg-geom/9506012. Pre-published.

[Bri02] Tom Bridgeland. “Flops and Derived Categories”. In: *Inventiones mathematicae* 147.3 (Mar. 1, 2002), pp. 613–632. arXiv: math/0009053.

[Bri07] Tom Bridgeland. “Stability Conditions on Triangulated Categories”. In: *Annals of Mathematics* 166.2 (Sept. 1, 2007), pp. 317–345. arXiv: math/0212237.

[CG72] C. Herbert Clemens and Phillip A. Griffiths. “The Intermediate Jacobian of the Cubic Threefold”. In: *The Annals of Mathematics* 95.2 (Mar. 1972), p. 281. JSTOR: 1970801.

[CP10] John Collins and Alexander Polishchuk. “Gluing Stability Conditions”. In: *Advances in Theoretical and Mathematical Physics* 14.2 (Apr. 2010), pp. 563–608. arXiv: 0902.0323.

[GO13] Sergey Gorchinskiy and Dmitri Orlov. “Geometric Phantom Categories”. In: *Publications mathématiques de l’IHÉS* 117.1 (June 1, 2013), pp. 329–349.

[Hal24] Daniel Halpern-Leistner. *The Noncommutative Minimal Model Program*. Mar. 27, 2024. arXiv: 2301.13168 [math]. Pre-published.

[Huy06] Daniel Huybrechts. *Fourier-Mukai Transforms in Algebraic Geometry*. Oxford Mathematical Monographs. Oxford ; New York: Clarendon, 2006. 307 pp.

[HW25] Fabian Haiden and Dongjian Wu. *A Counterexample to the Jordan-Hölder Property for Polarizable Semiorthogonal Decompositions*. Mar. 6, 2025. arXiv: 2502.12075 [math]. Pre-published.

[HYZZ25] Thorgal Hinault, Tony Yue Yu, Chi Zhang, and Shaowu Zhang. *Decomposition and Framing of F-bundles and Applications to Quantum Cohomology*. Mar. 28, 2025. arXiv: 2411.02266 [math]. Pre-published.

[IK23] Hiroshi Iritani and Yuki Koto. *Quantum Cohomology of Projective Bundles*. arXiv.org. July 7, 2023.

[Iri23] Hiroshi Iritani. *Quantum Cohomology of Blowups*. Dec. 28, 2023. arXiv: 2307.13555 [math]. Pre-published.

[KKPY25] Ludmil Katzarkov, Maxim Kontsevich, Tony Pantev, and Tony Yue YU. *Birational Invariants from Hodge Structures and Quantum Multiplication*. Aug. 7, 2025. arXiv: 2508.05105 [math]. Pre-published.

[Kol95] János Kollar. “Nonrational Hypersurfaces”. In: *Journal of the American Mathematical Society* 8.1 (1995), pp. 241–249. JSTOR: 2152888.

[Kra24] Johannes Krah. “A Phantom on a Rational Surface”. In: *Inventiones mathematicae* 235.3 (Mar. 1, 2024), pp. 1009–1018.

[Kuz10] Alexander Kuznetsov. “Derived Categories of Cubic Fourfolds”. In: *Cohomological and Geometric Approaches to Rationality Problems: New Perspectives*. Ed. by Fedor Bogomolov and Yuri Tschinkel. Boston: Birkhäuser, 2010, pp. 219–243. arXiv: 0808.3351.

[Kuz13] Alexander Kuznetsov. *A Simple Counterexample to the Jordan-Hölder Property for Derived Categories*. Apr. 3, 2013. arXiv: 1304.0903 [math]. Pre-published.

[Kuz16] Alexander Kuznetsov. “Derived Categories View on Rationality Problems”. In: *Rationality Problems in Algebraic Geometry: Levico Terme, Italy 2015*. Ed. by Arnaud Beauville, Brendan Hassett, Alexander Kuznetsov, Alessandro Verra, Rita Pardini, and Gian Pietro Pirola. Cham: Springer International Publishing, 2016, pp. 67–104.

[Wlo02] Jaroslaw Włodarczyk. *Toroidal Varieties and the Weak Factorization Theorem*. July 25, 2002. arXiv: [math/9904076](https://arxiv.org/abs/math/9904076). Pre-published.