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Abstract

We apply the theory of Hodge atoms developed in [KKPY25| to show that cubic-threefolds and general
cubic fourfolds are not ruled. We also discuss a possible derived category counterpart of atoms theory.

1 Introduction

Definition 1.1. An algebraic variety X of dimension n is called rational if there is a birational equivalent
P™ and is called ruled if it is birational equivalent to Y x P, where Y is some algebraic variety of dimension
n—1. Since P~ x P! is birational equivalent to P™ any rational variety is ruled.

Determine whether an algebraic variety is rational is a long-standing problem in algebraic geometry. In
|CG72], Clemens and Griffiths gives a proof on non-rationality of cubic threefolds via intermediate Jacobian.
However, the non-rationality of general cubic fourfold remains a long standing problem until recent breakthrough
by [KKPY25] via the theory of Hodge atoms. Also they give a new proof of non-rationality of cubic threefold.

On the other hand, the best result about non-ruledness of hypersurfaces is given by Kollar in [Kol95].

Theorem 1.2. ([Kol95, Theorem 4.1]) Let X4 C P™"*! be a very general hypersurface over C. If d >
2"[(n + 3)/3], then X4 is not ruled.

In particular, cubic threefolds and fourfolds (d = 3, n = 3,4) are not included in his result. In this paper,
we will prove the following.

Theorem 1.3. Cubic threefolds and very general cubic fourfolds are not ruled.

2 Hodge atoms

Here we give an overview of Hodge atoms developed in [KKPY25|. Let K be a non-archimedean field of
characteristic 0. And D denote the germ at 0 in a K-analytic unit disk with coordinate u.

Definition 2.1. A non-archimedean K-analytic F bundle, or F-bundle in short, is a triple (H,V)/B, such
that

1. B is a smooth K-analytic super variety or a germ of smooth K-analytic super variety along an even closed
smooth K-analytic subvariety.

2. H is a K-analytic super vector bundle over B x D.

3. V is a meromorphic flat connection on H with poles at most along B x {0}, and for any vector field & on
B, V29, and V¢ are regular.

Let £ be a vector field on B, then we define
w:Tp — End(’H|u:o)

to be the restriction of V¢ on H|[,—¢. And we define j;, to be its further restriction to Hy, o).



Definition 2.2. An F-bundle (H,V)/B is called maximal (resp. over-maximal) at a geometric point b € B if
there exists a vector h € H oy such that

evy 0 Ly : TB,b — H(b,O)

is an isomorphism (resp. epimorphism,).
And an F-bundle is maximal (resp. over-maixmal) if it is mazimal (resp. over-maizmal) everywhere.

Let (H,V)/B be a maximal F-bundle, the Euler vector field is the unique even vector field Eu on B which
under the action p maps to endomorphism V29, |3, _,-

Now we construct the A-model F-bundle via Gromov-Witten theory. Let K = K an algebraic closed field
of characteristic 0 and X a smooth projective K-variety and S € CH?O’“(X ). We define My, (X, 3) as the
moduli of stable maps ¢ : (C,p1,--- ,pn) — X where

1. C is a connected nodal genus 0 curve.
2. p1,--- ,Ppn are smooth points of C.

3. ¢.[C] = B and if ¢ contracts a component of C' to a point in X, then the number of marked points and
nodes on the component > 3.

There exists a virtual fundamental class on proper Deligne-Mumford stack M ,,(X, 3) (|BF97))

[Mo,n (X7 5)}Vir € CH&(n,ﬂ) (ﬂo,n(Xv ﬁ))

Here

5(n,B8) =n+ (dim X — 3) —&-/ﬂcl(TX)

is the virtual dimension. We define the Gromov-Witten cycle class I, g(X) as the image

Lnp(X) = evi[Mon (X, IE™ € CHIG) (X)) © Q

where o
ev ! MO,n(Xv B) — Xxna (Cvplv e 7pn7¢) — (d)(pl)a e 7¢(pn))

For simplicity, we just consider the case K = C and K = Q((y®)) D k = Q is the algebraic closed
non-archimedean field of Puiseux series. Let X/K be a smooth projective variety, and H*(X) = H*(X(C)?*", k).
Let Ny (X,Z) = CHY™(X) the group of curve classes, and let NE(X,Z) C N;(X,Z) the monoid of effective
curve classes. We define

kINE(X,Z)] = ®senp(x.zk - ¢°

with multiplication ¢% - ¢% = ¢® 82, And write k[q] = k[NE(X, Z)] for the completion with respect to ideal
generated by all ¢%, 3 # 0.

Let {T}}i=o.... - be a homogeneous basis of H*(X), where Tp = 1 € H°(X) and degree two basis are chosen
to form two groups which spanning H?(X)ae and HZ,, respectively. And (¢;) are coordinates with respect to

the above basis. Then for v1,--- , v, € H*(X) we define

<71,~~,%>B::/ X Ry,
In,p(X)

We define the H*-valued genus 0 Gromov-Witten potential to be the formal power series

B
q
Bgit) = D 5 > (T Tyt oot € klallto, - 1] =t Novy
n>0,8eNE(X,Z) i1, ,in

Let Tr(X) := NS(X, Z)t @z Gy, x, where NS(X, Z)s the torsion-free Néron-Severi group. Let {L;} be a
sequence of ample line bundles, whose first Chern class w; form a basis of Néron-Severi group. We define By 4
to be the preimage of the ample cone under the valuation map of non-archimedean field 7 (X)*" — NS(X,R),
with coordinates g; corresponding to w;. Define BY, as product of analytic affine line corresponding to ¢o and
unit polydisk with coordinates corresponding to degT; € {2,4,6,---}. Define BY; to be the product of analytic



affine line corresponding to to and unit polydisk with coordinates corresponding to degT; € {4,6,8,---} and
degT; = 2 and transcendental. Define BS3? as the super analytic variety whose underlying variety is a point
and algebra of function is exterior algebra in the coordinates ¢; for degT; € {1,3,5,---}. Finally, we set
Bx = Bx 4 x BY,; X Bg’(dd Bx := Bx,q x BY; % B34, Let H = H*(X) ®k Opy xp be the trivial vector bundle
on Bx x D. We have a canonical identification H = ®]_; Op, xp - T;. We can define quantum product

*x  HQQH —H
by
- PP ,
T, «T;,T)) = — T'.T
(T; * Ty, Th) ;ataatﬁati )

where T is the Poincaré dual of T}.
Then we define the non-archimedean analytic quantum connection V: H — H ® Qf
4 p—dimX -id
2

xplt, u!] to be

Vo, = 0y — u_Q(Eu* (=) +u

Vo, = 0g; +u" g (wj* ()
Vo, =0, + uw N % ()

Here pn : H — H is the degree operator p = @2dimXg . idya(x), and Eu is the Euler vector field for point

v € Bx by
©— 2id

Eu, = ey (Tx) + () € Hy

We define the non-archimedean mazimal A-model F-bundle associated to X to be the restriction of (H,V)/Bx
to Bx.

For a smooth complex variety X, we take (H,V)/Bx to be the non-archimedean maximal A-model
F-bundle. And let B — Bx be the ramified covering given by the spectrum of the Eu-action. Ux C B the
locus where the number of eigenvalues of the Eu-action is maximal, and Uy :=Ux X Bx Biea. The set of local
Hodge atoms associated to X is mo(Uyx) and the multiplicity of an a € mo(Ux) is defined to be the degree of
the covering of corresponding connected component U X,a Over Ux.

The set HAtoms of all Hodge atoms of smooth projective variety is the quotient

HAtoms := HW(UX)/Aut(X) / ~
[X]
where the union is taken over isomorphism class of complex smooth projective variety, and the equivalence
relation is generated by following three elementary equivalences

1. [KKPY25, Section 5.2.3] If X; and X, are tow non-empty smooth projective varieties over K. Then we
have a € mo(Ux, )/ Aut(Xy) disjoint union elementary equivalent to its image « under the embedding

mo(Ux, )/ Aut(X1) = mo(Ux, 11x,)/ Aut(Xy [ ] X2)

2. |[KKPY25, Section 5.2.4] Let X is a pure-dimensional smooth projective variety over K, and Z C X is
a smooth projective subvariety of codimension > 2. We denote by X = Blz X the blowup of X with
center Z and X' := X[[Z]]---]] Z disjoint union of X and (m — 1)-copies of Z. Then we have local
atom « € mo(X)/ Aut to be blowup elementary equivalent to a local atom o € mo(X')/ Aut(X’) via the
following correspondence

mo(Ug) = mo(Ux/)

T,

mo(Ux) 7(Ux) [T mo(Uz)H

/ \»

WO(UX)/Aut(X) mo(Ux)/ Aut(X")



Here Uy C Uy and Uxs C Uxs are subset over which the corresponding A-model F-bundle of X and
X’ coincides and Uy and Ux/ are their pullback to ramified covers. The existence of such Uy and Ux-
follows from Iritani’s blow-up formula [Iri23].

3. [KKPY25, Section 5.2.5] Suppose X is a non-empty smooth projective variety over K and F is a
vector bundle over X of rank > 2. By the results of [IK23] and [HYZZ25|, there exists a non-empty
connected domain Upgy C Up(py and Ux C Uy such that Upp) = TU)];-[T such that the Euler operator
are compatible. This gives a correspondence between local atoms of P(E) to the local atoms of X U and
we say o € mo(Up(p))/ Aut(P(E)) is Leray-Hirsch elementary equivalent to the corresponding local atoms

o € Uyprr/ Aut(X1I7),

3 Application to Cubic Hypersurfaces

By definition the Hodge atoms admits a natural filtration
HAtoms<g C HAtoms<; C - -

Our first result is an obvious improvement of [KKPY25| Proposition 5.17],

Proposition 3.1. Let X be a smooth projective variety of dimension d > 2 over K. Suppose we have a local
Hodge atom o of X such that & ¢ HAtomsgim<a—2. Then X can not be birationally equivalent to Y x P%.,
where Y is a variety of dimension d — 2. In particular, X can not be birationally equivalent to ]P’%.

Proof. Suppose X is birationally equivalent to Y x P2 then by weak factorization theorem [Wlo02|, there exists
a series of blowups and blow-downs with smooth centers connecting X and Y x P2. Since the centers must have
codimension at least 2, and every local atom of ¥ x P? must belong to HAtoms<y by Leray-Hirsch elementary
equivalence, every local atom of X also contains in HAtoms<s which is a contradiction. O

The following lemma gives an atom theoretic non-ruledness criterion.

Lemma 3.2. Let X be a smooth projective variety of dimension d > 2 over K. Suppose the number of local
Hodge atom (counting by multiplicity) o of X such that o ¢ HAtomsqim<q—2 s odd. Then X is not birationally
equivalent to Y x Pk, where Y is a variety of dimension d — 2. That is X is not ruled.

Proof. We argue by contradiction. If X is birational to Y x P'. Then Hodge atom of X is equal to 2-copies of
Hodge atoms of Y modulo HAtoms<gim x—2. Therefore, counting by multiplicity, the total number of local
Hodge atoms « with o € HAtomsgim<a—2 must be odd. O

For cubic threefold, we can do better.
Theorem 3.3. 1. A cubic threefold is not ruled.
2. A wvery general cubic threefold is not ruled.

Proof. Let X be a smooth cubic threefold. From calculation of [KKPY25, Example 6.21], we know that the
atomic decomposition of X contains one indecomposable atom « corresponding to the eigenvalue 0. Also «
cannot come from a Hodge atom of dimension < 1. By a cubic threefold is not ruled.

The second claim follows from calculation ofHodge atoms of very general cubic fourfolds in proof of

IKKPY25, Theorem 6.8] and O

4 Derived Category Counterpart

In [Kuzl6], the author suggested a possible approach to prove the non-rationality via derived category
method. Let A be a triangulated category, one can define the geometric dimension of A denoted by gdim(.A)
as the minimal integer n such that A can be realized as an admissible subcategory of a smooth projective
variety of dimension n. And a semiorthogonal decomposition T = (A;,--- ,A,) is called mazimal if each
component A; is indecomposable. Let X be a projective variety of dimension n, and D?(X) = (A;,--- , A,) to
be a maximal semiorthogonal decomposition, then we “define” Griffiths component of X to be

Griff (X) := {A; | gdim(A;) > n — 1}



If Griffiths component is well defined, i.e. it doesn’t depend on the choice of maximal decomposition, then
by weak factorization theorem and blow-up formula for derived category [BO95], one can use the non-emptiness
of Griffiths component to show that a variety is not rational. However, as already mentioned in [Kuzl6], the
Griffiths component is not well defined, i.e. it depends on the choice of maximal decomposition. Here are some
known counterexamples.

Example 4.1. [Kuzl3] Let
o B1
Q= ( .aiigoﬁiio Iﬂlaz—BQOq)
2

be the quiver. Then D(Q) = (P1, P2, Ps) where P; are the projective module of i-th vertezx. Also, there exists
another exceptional object

id i
= ( F ==k #; k )
And D*(Q) = (P+, P), and every indecomposable admissible subcategory of P+ has geometric dimension > 1.

However, D(Q) can be realized as an admissible subcategory of a rational threefold X which is two step blow-up
of P3.

Example 4.2. There are more examples about phantoms (admissible subcategory with a trivial Hochschild
homology and a trivial Grothendieck group) and quasiphantoms (admissible subcategory with a trivial Hochschild
homology and a finite Grothendieck group) [GO15]. Obviously, gdim(A) > 1 of a phantom or quasiphantom A.
Therefore [Kra24)] gives a counterezample.

Based on construction of Hodge atoms, we consider the following modification of the above idea, by
introducing stability conditions [Bri07]. We first assume the following conjecture.

Conjecture 4.3. Let X be a smooth projective variety. Then D(X) has Bridgeland stability conditions.

Let T = (A, -+, A,) is called maizmal polarized if every A; is indecomposable and there exists a
Bridgeland stability on A;. Given a maximal polarized semiorthogonal decomposition, we define the polarized
Griffiths component of X similarly, denoted by pGriff (X).

Conjecture 4.4. Polarized Griffiths component is well defined, i.e. independent of choice of mazimal polarized
semiorthogonal decomposition.

Remark 4.5. In [HW25], it is shown that even polarized semiorthogonal decomposition doesn’t have Jordan-
Holder property, but their example doesn’t directly lead to the counterexample of above conjecture, because the
components may still lie in some derived category of a variety of codimension > 2.

Although, we can not prove above conjecture, we give some evidence of above conjecture. First, we show
that the above two counterexamples is no longer a counterexample for our new conjecture. In the
category P1 doesn’t have Bridgeland stability condition [HW25], therefore at least one of its indecomposable
admissible subcategory has no semiorthogonal decomposition, otherwise the glueing [CP10] will produce stability
condition on P*. For the phantom or quasiphantom category can not have Bridgeland stability
condition by definition.

On the other hand, by [BMMS12] and [BLMS23|, the Kuznetsov components of cubic threefold or fourfold
have Bridgeland stability condition, and therefore the argument in [Kuz10] and [Kuz16| can still be applied to
prove the non-rationality of cubic threefold and general cubic fourfold.

We also point out that a special case of DK conjecture [Huy06] that two birational smooth projective
Calabi-Yau varieties are derived equivalent is a corollary of above two conjecture. The conjecture is known to
be true for Calabi-Yau threefold by [Bri02].

Corollary 4.6. If[Conjecture 4.5 and|[Conjecture 4.4 holds, then every two birational Calabi- Yau variety are
derived equivalent.

Proof. Let X and Y be two birational Calabi-Yau variety. Since Calabi-Yau category is indecomposable and
by Hochschild homology, they cannot be admissible subcategory of varieties of dim X — 2. Therefore, we have

{D*(X)} = pGriff (X) = pGriff (V) = {D"(Y)}
O

Remark 4.7. The above reasoning have also been pointed out in [Hal24]. But our conjecture seems to be
weaker than the grand program proposed there.
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