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Abstract

We apply the theory of Hodge atoms developed in [KKPY25] to show that cubic-threefolds and general
cubic fourfolds are not ruled. We also discuss a possible derived category counterpart of atoms theory.

1 Introduction

Definition 1.1. An algebraic variety X of dimension n is called rational if there is a birational equivalent
Pn and is called ruled if it is birational equivalent to Y × P1, where Y is some algebraic variety of dimension
n− 1. Since Pn−1 × P1 is birational equivalent to Pn any rational variety is ruled.

Determine whether an algebraic variety is rational is a long-standing problem in algebraic geometry. In
[CG72], Clemens and Griffiths gives a proof on non-rationality of cubic threefolds via intermediate Jacobian.
However, the non-rationality of general cubic fourfold remains a long standing problem until recent breakthrough
by [KKPY25] via the theory of Hodge atoms. Also they give a new proof of non-rationality of cubic threefold.

On the other hand, the best result about non-ruledness of hypersurfaces is given by Kollár in [Kol95].

Theorem 1.2. ([Kol95, Theorem 4.1]) Let Xd ⊂ Pn+1 be a very general hypersurface over C. If d ≥
2r⌈(n+ 3)/3⌉, then Xd is not ruled.

In particular, cubic threefolds and fourfolds (d = 3, n = 3, 4) are not included in his result. In this paper,
we will prove the following.

Theorem 1.3. (Theorem 3.3) Cubic threefolds and very general cubic fourfolds are not ruled.

2 Hodge atoms

Here we give an overview of Hodge atoms developed in [KKPY25]. Let K be a non-archimedean field of
characteristic 0. And D denote the germ at 0 in a K-analytic unit disk with coordinate u.

Definition 2.1. A non-archimedean K-analytic F bundle, or F-bundle in short, is a triple (H,∇)/B, such
that

1. B is a smooth K-analytic super variety or a germ of smooth K-analytic super variety along an even closed
smooth K-analytic subvariety.

2. H is a K-analytic super vector bundle over B × D.

3. ∇ is a meromorphic flat connection on H with poles at most along B × {0}, and for any vector field ξ on
B, ∇u2∂u and ∇uξ are regular.

Let ξ be a vector field on B, then we define

µ : TB → End(H|u=0)

to be the restriction of ∇uξ on H|u=0. And we define µb to be its further restriction to H(b,0).
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Definition 2.2. An F-bundle (H,∇)/B is called maximal (resp. over-maximal) at a geometric point b ∈ B if
there exists a vector h ∈ H(b,0) such that

evh ◦ µb : TB,b → H(b,0)

is an isomorphism (resp. epimorphism).
And an F-bundle is maximal (resp. over-maixmal) if it is maximal (resp. over-maixmal) everywhere.

Let (H,∇)/B be a maximal F-bundle, the Euler vector field is the unique even vector field Eu on B which
under the action µ maps to endomorphism ∇u2∂u

|H|u=0
.

Now we construct the A-model F-bundle via Gromov-Witten theory. Let K = K an algebraic closed field
of characteristic 0 and X a smooth projective K-variety and β ∈ CHhom

1 (X). We define M0,n(X,β) as the
moduli of stable maps ϕ : (C, p1, · · · , pn) → X where

1. C is a connected nodal genus 0 curve.

2. p1, · · · , pn are smooth points of C.

3. ϕ∗[C] = β and if ϕ contracts a component of C to a point in X, then the number of marked points and
nodes on the component ≥ 3.

There exists a virtual fundamental class on proper Deligne-Mumford stack M0,n(X,β) ([BF97])

[M0,n(X,β)]vir ∈ CHδ(n,β)(M0,n(X,β))

Here

δ(n, β) = n+ (dimX − 3) +

∫
β

c1(TX)

is the virtual dimension. We define the Gromov-Witten cycle class In,β(X) as the image

In,β(X) = ev∗[M0,n(X,β)]homvir ∈ CHhom
δ(n,β)(X

×n)⊗Q

where
ev : M0,n(X,β) → X×n, (C, p1, · · · , pn, ϕ) → (ϕ(p1), · · · , ϕ(pn))

For simplicity, we just consider the case K = C and K = Q((yQ)) ⊃ k = Q is the algebraic closed
non-archimedean field of Puiseux series. Let X/K be a smooth projective variety, and H∗(X) = H∗(X(C)an, k).
Let N1(X,Z) = CHhom

1 (X) the group of curve classes, and let NE(X,Z) ⊂ N1(X,Z) the monoid of effective
curve classes. We define

k[NE(X,Z)] = ⊕β∈NE(X,Z)k · qβ

with multiplication qβ1 · qβ2 = qβ1+β2 . And write kJqK = kJNE(X,Z)K for the completion with respect to ideal
generated by all qβ , β ̸= 0.

Let {Ti}i=0,··· ,r be a homogeneous basis of H∗(X), where T0 = 1 ∈ H0(X) and degree two basis are chosen
to form two groups which spanning H2(X)alg and H2

trans respectively. And (ti) are coordinates with respect to
the above basis. Then for γ1, · · · , γn ∈ H∗(X) we define

⟨γ1, · · · , γn⟩β :=

∫
In,β(X)

γ1 ⊠ · · ·⊠ γn

We define the H∗-valued genus 0 Gromov-Witten potential to be the formal power series

Φ(q; t) :=
∑

n≥0,β∈NE(X,Z)

qβ

n!

∑
i1,··· ,in

⟨Ti1 , · · · , Tin⟩βti1 · · · tin ∈ kJqKJt0, · · · , trK =: NovX

Let TK(X) := NS(X,Z)tf ⊗Z Gm,K, where NS(X,Z)tf the torsion-free Néron-Severi group. Let {Li} be a
sequence of ample line bundles, whose first Chern class ωi form a basis of Néron-Severi group. We define BX,q

to be the preimage of the ample cone under the valuation map of non-archimedean field TK(X)an → NS(X,R),
with coordinates qi corresponding to ωi. Define Bev

X,t as product of analytic affine line corresponding to t0 and
unit polydisk with coordinates corresponding to deg Ti ∈ {2, 4, 6, · · · }. Define Bev

X,t to be the product of analytic
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affine line corresponding to t0 and unit polydisk with coordinates corresponding to deg Ti ∈ {4, 6, 8, · · · } and
deg Ti = 2 and transcendental. Define Bodd

X as the super analytic variety whose underlying variety is a point
and algebra of function is exterior algebra in the coordinates ti for deg Ti ∈ {1, 3, 5, · · · }. Finally, we set
BX := BX,q ×Bev

X,t ×Bodd
X BX := BX,q ×Bev

X,t ×Bodd
X . Let H = H∗(X)⊗k OBX×D be the trivial vector bundle

on BX × D. We have a canonical identification H = ⊕r
i=1OBX×D · Ti. We can define quantum product

⋆ : H⊗H → H

by

⟨Ti ⋆ Tj , Tk⟩ =
r∑

i=1

⟨ ∂3Φ

∂tα∂tβ∂ti
T i, Tk⟩

where T i is the Poincaré dual of Ti.
Then we define the non-archimedean analytic quantum connection ∇ : H → H⊗ Ω1

BX×D[u, u
−1] to be

∇∂u = ∂u − u−2(Eu ⋆ (−)) + u−1µ− dimX · id
2

∇∂qj
= ∂qj + u−1q−1

j (ωj ⋆ (−))

∇∂ti
= ∂ti + u−1(Ti ⋆ (−))

Here µ : H → H is the degree operator µ = ⊕2 dimX
a=0 a · idHa(X), and Eu is the Euler vector field for point

γ ∈ BX by

Euγ = c1(TX) +
µ− 2id

2
(γ) ⊂ Hγ

We define the non-archimedean maximal A-model F-bundle associated to X to be the restriction of (H,∇)/BX

to BX .
For a smooth complex variety X, we take (H,∇)/BX to be the non-archimedean maximal A-model

F -bundle. And let B̃ → BX be the ramified covering given by the spectrum of the Eu-action. UX ⊂ B the
locus where the number of eigenvalues of the Eu-action is maximal, and ŨX := UX ×BX

B̃red. The set of local
Hodge atoms associated to X is π0(ŨX) and the multiplicity of an α ∈ π0(ŨX) is defined to be the degree of
the covering of corresponding connected component ŨX,α over UX .

The set HAtoms of all Hodge atoms of smooth projective variety is the quotient

HAtoms :=

∐
[X]

π(ŨX)/Aut(X)

 / ∼

where the union is taken over isomorphism class of complex smooth projective variety, and the equivalence
relation is generated by following three elementary equivalences

1. [KKPY25, Section 5.2.3] If X1 and X2 are tow non-empty smooth projective varieties over K. Then we
have α ∈ π0(ŨX1

)/Aut(X1) disjoint union elementary equivalent to its image α under the embedding

π0(ŨX1
)/Aut(X1) ↪→ π0(ŨX1

∐
X2

)/Aut(X1

∐
X2)

2. [KKPY25, Section 5.2.4] Let X is a pure-dimensional smooth projective variety over K, and Z ⊂ X is
a smooth projective subvariety of codimension ≥ 2. We denote by X̂ = BlZ X the blowup of X with
center Z and X ′ := X

∐
Z
∐

· · ·
∐

Z disjoint union of X and (m− 1)-copies of Z. Then we have local
atom α ∈ π0(X)/Aut to be blowup elementary equivalent to a local atom α′ ∈ π0(X

′)/Aut(X ′) via the
following correspondence

π0(ŨX̂) ∼= π0(UX′)

π0(ŨX̂) π(ŨX)
∐

π0(ŨZ)
∐

m−1

π0(ŨX̂)/Aut(X̂) π0(ŨX′)/Aut(X ′)
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Here UX̂ ⊂ UX̂ and UX′ ⊂ UX′ are subset over which the corresponding A-model F -bundle of X̂ and

X ′ coincides and ŨX̂ and ŨX′ are their pullback to ramified covers. The existence of such UX̂ and UX′

follows from Iritani’s blow-up formula [Iri23].

3. [KKPY25, Section 5.2.5] Suppose X is a non-empty smooth projective variety over K and E is a
vector bundle over X of rank ≥ 2. By the results of [IK23] and [HYZZ25], there exists a non-empty

connected domain UP(E) ⊂ UP(E) and UX ⊂ UX such that UP(E)
∼= U

∐
r

X such that the Euler operator

are compatible. This gives a correspondence between local atoms of P(E) to the local atoms of X
∐

r and
we say α ∈ π0(ŨP(E))/Aut(P(E)) is Leray-Hirsch elementary equivalent to the corresponding local atoms

α′ ∈ ŨX
∐

r/Aut(X
∐

r).

3 Application to Cubic Hypersurfaces

By definition the Hodge atoms admits a natural filtration

HAtoms≤0 ⊂ HAtoms≤1 ⊂ · · ·

Our first result is an obvious improvement of [KKPY25, Proposition 5.17],

Proposition 3.1. Let X be a smooth projective variety of dimension d ≥ 2 over K. Suppose we have a local
Hodge atom α of X such that α ̸∈ HAtomsdim≤d−2. Then X can not be birationally equivalent to Y × P2

K,
where Y is a variety of dimension d− 2. In particular, X can not be birationally equivalent to Pd

K.

Proof. Suppose X is birationally equivalent to Y × P2 then by weak factorization theorem [Wlo02], there exists
a series of blowups and blow-downs with smooth centers connecting X and Y ×P2. Since the centers must have
codimension at least 2, and every local atom of Y × P2 must belong to HAtoms≤2 by Leray-Hirsch elementary
equivalence, every local atom of X also contains in HAtoms≤2 which is a contradiction.

The following lemma gives an atom theoretic non-ruledness criterion.

Lemma 3.2. Let X be a smooth projective variety of dimension d ≥ 2 over K. Suppose the number of local
Hodge atom (counting by multiplicity) α of X such that α ̸∈ HAtomsdim≤d−2 is odd. Then X is not birationally
equivalent to Y × P1

K, where Y is a variety of dimension d− 2. That is X is not ruled.

Proof. We argue by contradiction. If X is birational to Y × P1. Then Hodge atom of X is equal to 2-copies of
Hodge atoms of Y modulo HAtoms≤dimX−2. Therefore, counting by multiplicity, the total number of local
Hodge atoms α with α ̸∈ HAtomsdim≤d−2 must be odd.

For cubic threefold, we can do better.

Theorem 3.3. 1. A cubic threefold is not ruled.

2. A very general cubic threefold is not ruled.

Proof. Let X be a smooth cubic threefold. From calculation of [KKPY25, Example 6.21], we know that the
atomic decomposition of X contains one indecomposable atom α corresponding to the eigenvalue 0. Also α
cannot come from a Hodge atom of dimension ≤ 1. By Lemma 3.2, a cubic threefold is not ruled.

The second claim follows from calculation ofHodge atoms of very general cubic fourfolds in proof of
[KKPY25, Theorem 6.8] and Lemma 3.2.

4 Derived Category Counterpart

In [Kuz16], the author suggested a possible approach to prove the non-rationality via derived category
method. Let A be a triangulated category, one can define the geometric dimension of A denoted by gdim(A)
as the minimal integer n such that A can be realized as an admissible subcategory of a smooth projective
variety of dimension n. And a semiorthogonal decomposition T = ⟨A1, · · · ,An⟩ is called maximal if each
component Ai is indecomposable. Let X be a projective variety of dimension n, and Db(X) = ⟨A1, · · · ,An⟩ to
be a maximal semiorthogonal decomposition, then we “define” Griffiths component of X to be

Griff(X) := {Ai | gdim(Ai) ≥ n− 1}
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If Griffiths component is well defined, i.e. it doesn’t depend on the choice of maximal decomposition, then
by weak factorization theorem and blow-up formula for derived category [BO95], one can use the non-emptiness
of Griffiths component to show that a variety is not rational. However, as already mentioned in [Kuz16], the
Griffiths component is not well defined, i.e. it depends on the choice of maximal decomposition. Here are some
known counterexamples.

Example 4.1. [Kuz13] Let

Q =

(
• • •

α2

α1

β2

β1

| β1α2 = β2α1

)
be the quiver. Then D(Q) = ⟨P1, P2, P3⟩ where Pi are the projective module of i-th vertex. Also, there exists
another exceptional object

P =

(
k k k

0

id

0

id
)

And Db(Q) = ⟨P⊥, P ⟩, and every indecomposable admissible subcategory of P⊥ has geometric dimension > 1.
However, D(Q) can be realized as an admissible subcategory of a rational threefold X which is two step blow-up
of P3.

Example 4.2. There are more examples about phantoms (admissible subcategory with a trivial Hochschild
homology and a trivial Grothendieck group) and quasiphantoms (admissible subcategory with a trivial Hochschild
homology and a finite Grothendieck group) [GO13]. Obviously, gdim(A) > 1 of a phantom or quasiphantom A.
Therefore [Kra24] gives a counterexample.

Based on construction of Hodge atoms, we consider the following modification of the above idea, by
introducing stability conditions [Bri07]. We first assume the following conjecture.

Conjecture 4.3. Let X be a smooth projective variety. Then Db(X) has Bridgeland stability conditions.

Let T = ⟨A1, · · · ,An⟩ is called maixmal polarized if every Ai is indecomposable and there exists a
Bridgeland stability on Ai. Given a maximal polarized semiorthogonal decomposition, we define the polarized
Griffiths component of X similarly, denoted by pGriff(X).

Conjecture 4.4. Polarized Griffiths component is well defined, i.e. independent of choice of maximal polarized
semiorthogonal decomposition.

Remark 4.5. In [HW25], it is shown that even polarized semiorthogonal decomposition doesn’t have Jordan-
Hölder property, but their example doesn’t directly lead to the counterexample of above conjecture, because the
components may still lie in some derived category of a variety of codimension ≥ 2.

Although, we can not prove above conjecture, we give some evidence of above conjecture. First, we show
that the above two counterexamples is no longer a counterexample for our new conjecture. In Example 4.1, the
category P⊥ doesn’t have Bridgeland stability condition [HW25], therefore at least one of its indecomposable
admissible subcategory has no semiorthogonal decomposition, otherwise the glueing [CP10] will produce stability
condition on P⊥. For Example 4.2, the phantom or quasiphantom category can not have Bridgeland stability
condition by definition.

On the other hand, by [BMMS12] and [BLMS23], the Kuznetsov components of cubic threefold or fourfold
have Bridgeland stability condition, and therefore the argument in [Kuz10] and [Kuz16] can still be applied to
prove the non-rationality of cubic threefold and general cubic fourfold.

We also point out that a special case of DK conjecture [Huy06] that two birational smooth projective
Calabi-Yau varieties are derived equivalent is a corollary of above two conjecture. The conjecture is known to
be true for Calabi-Yau threefold by [Bri02].

Corollary 4.6. If Conjecture 4.3 and Conjecture 4.4 holds, then every two birational Calabi-Yau variety are
derived equivalent.

Proof. Let X and Y be two birational Calabi-Yau variety. Since Calabi-Yau category is indecomposable and
by Hochschild homology, they cannot be admissible subcategory of varieties of dimX − 2. Therefore, we have

{Db(X)} = pGriff(X) = pGriff(Y ) = {Db(Y )}

Remark 4.7. The above reasoning have also been pointed out in [Hal24]. But our conjecture seems to be
weaker than the grand program proposed there.
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Categories. Apr. 3, 2013. arXiv: 1304.0903 [math]. Pre-published.

[Kuz16] Alexander Kuznetsov. “Derived Categories View on Rationality Problems”. In: Rationality Problems
in Algebraic Geometry: Levico Terme, Italy 2015. Ed. by Arnaud Beauville, Brendan Hassett,
Alexander Kuznetsov, Alessandro Verra, Rita Pardini, and Gian Pietro Pirola. Cham: Springer
International Publishing, 2016, pp. 67–104.

6

https://arxiv.org/abs/1703.10839
https://arxiv.org/abs/alg-geom/9506012
https://arxiv.org/abs/math/0009053
https://arxiv.org/abs/math/0212237
http://www.jstor.org/stable/1970801
https://arxiv.org/abs/0902.0323
https://arxiv.org/abs/2301.13168
https://arxiv.org/abs/2502.12075
https://arxiv.org/abs/2411.02266
https://arxiv.org/abs/2307.13555
https://arxiv.org/abs/2508.05105
http://www.jstor.org/stable/2152888
https://arxiv.org/abs/0808.3351
https://arxiv.org/abs/1304.0903


[Wlo02] Jaroslaw Wlodarczyk. Toroidal Varieties and the Weak Factorization Theorem. July 25, 2002.
arXiv: math/9904076. Pre-published.

7

https://arxiv.org/abs/math/9904076

	Introduction
	Hodge atoms
	Application to Cubic Hypersurfaces
	Derived Category Counterpart

